Soils

Living in the Environment, 15th Edition, Miller

SOIL STRUCTURE O-horizon: leaf litter, organic material

A-horizon: plough zone, rich in organic matter

B-horizon: zone of accumulation

C-horizon: weathering soil; little organic material or life

R-horizon: unweathered parent material

• Soil horizons • Soil profile

Texture	Nutrient Capacity	Infiltration	Water-Holding Capacity	Aeration	Tilth
	Good	Poor		Poor	Poor
	Medium	Medium		Medium	Medium
	Poor	Good		Good	Good
	Medium	Medium		Medium	Medium

Soil Chemistry

- Acidity / Alkalinity _____
- Major Nutrients

—_____ (phosphates)
—_____ (potash)

Acidity / Alkalinity – pH

- Proper pH directly affects the _____
 of plant food _____
- Soil is best if between pH _____(except for certain _____ loving plants)
 - 'Sour' if too _____
 - 'Sweet' if too _____

Acidity / Alkalinity – pH

- Too acidic or basic will _____:
 - Allow compounds to _____
 - Allow presence of
- If soil is too acidic, add ground _
- If soil is too basic, add ______
 ______like steer ______

Nitrogen Content

- Importance:
 - Stimulates above ground _
 - Produces rich _
 - Influences _____ and ____ and ____
 _____ content of fruit
 - A plant's use of

is stimulated by

presence of N

- Taken up by plant as _____ and ____
- Replenished naturally by

on legume

• Fertilizer from manure or _____ reaction.

Phosphorus for Growth

- Abundant in:
 - -- Strong ______
 - Increases _____ yield and _____ development
 - Parts of _____ involved in _____ uptake (hair)
- Major role in _____ of _____
- Taken up by _____ as H₂PO₄⁻ and HPO₄⁻²
 - is made from rock phosphate

Potassium Content

- Potash
- Important in ______ and _____ of plant
 Carries ______ through the plant
 Improves ______ of ______
 Improves ______ of _______
 - Promotes vigorous _____
 - Offsets too much _____
- Found naturally in feldspar and _____

Justus von Liebig's Law of

Plant production can be no greater than that level allowed by the growth factor present in the lowest amount relative to the optimum amount for that factor

Soil Formation Soils develop in response to:

Climate

 Two most important factors that determine climate are ______ and _____ and they affect:

_ processes

-Microenvironmental conditions for soil

-Soil

in the soil

Parent Material

- Refers to the _____ and _____(comes from which the soil ______(comes from).
- The nature of the _______
 has a direct effect on the soil

and

cycling pathways.

Parent material may be ______ or transported to area by ______, or glacier.

Topography

 Physical characteristics of location where soil is formed:

direction

or

exposure

 Viewed on Macro-scale (_ microscale (______

• After enough time, the soil may reach

Time

–Depends on		
–Feedback of	and	
factors may	or	
mature profile.		

Destructional -Weathering Landscapes broken down by chemical & physical processes & erosion

Physical

- includes temperature changes (freezing and thawing, thermal expansion), crystal growth, pressure, plant roots, burrowing animals
- causes disintegration of parent material and facilitates chemical weathering

Chemical

- always in water
- includes hydration, hydrolysis, oxidation, reduction, carbonation and exchange
- examples :
 - oxidation of Fe to form limonite, deposited in joints, inhibits groundwater flow
 - hydrolysis of feldspars to form clay (kaolin) - forms infill for joints

Destructional - Mass wasting

- Gravitational ______ of weathered _____ down ______ without aid of water or wind (landslips)
- transported material is called ______
- often set off by man's _____
- can involve very small to immense volumes of
- sliding, toppling, unravelling, _____
- controlled by discontinuities (joints, bedding, schistocity, etc)
- (picture on next slide....)

Destructional - Erosion most significantly by:

- Sheet erosion
 - by ______ flowing down ______ sides
 severe when ______ (plants) removed and ______ materials uncemented
- Stream erosion
 - materials brought downslope by mass wasting and sheet erosion are transported by _____

by the streams - meanders etc

– (picture on next slide...)

Destructional - Karsts

- Forms by dissolution of ______ limestone is only common rock ______ in water - dissolved carbon dioxide in rain water
- form highly variable ______

conditions

- (picture on next slide...)

